alexa Chemical coupling between ammonia, acid gases, and fine particles.


Journal of Clinical Toxicology

Author(s): Baek BH, Aneja VP, Tong Q

Abstract Share this page

Abstract The concentrations of inorganic aerosol components in the fine particulate matter (PM(fine)< or =2.5 microm) consisted of primarily ammonium, sodium, sulfate, nitrate, and chloride are related to the transfer time scale between gas to particle phase, which is a function of the ambient temperature, relative humidity, and their gas phase constituent concentrations in the atmosphere. This study involved understanding the magnitude of major ammonia sources; and an up-wind and down-wind (receptor) ammonia, acid gases, and fine particulate measurements; with a view to accretion gas-to-particle conversion (GTPS) process in an agricultural/rural environment. The observational based analysis of ammonia, acid gases, and fine particles by annular denuder system (ADS) coupled with a Gaussian dispersion model provided the mean pseudo-first-order k(S-1) between NH(3) and H(2)SO(4) aerosol approximately 5.00 (+/-3.77)x10(-3) s(-1). The rate constant was found to increase as ambient temperature, wind speed, and solar radiation increases, and decreases with increasing relative humidity. The observed [NH(3)][HNO(3)] products exceeded values predicted by theoretical equilibrium constants, due to a local excess of ammonia concentration.
This article was published in Environ Pollut and referenced in Journal of Clinical Toxicology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version