alexa Chemical speciation and phytoavailability of Zn, Cu, Ni and Cd in soil amended with fly ash-stabilized sewage sludge.
Environmental Sciences

Environmental Sciences

Journal of Bioremediation & Biodegradation

Author(s): Su DC, Wong JW

Abstract Share this page

Abstract A sequential extraction method was used to determine chemical forms of Cu, Zn, Ni and Cd in fly ash-stabilized sludge. A loamy acid soil amended with fly ash-stabilized sludge was used to grow corn under greenhouse conditions. Sewage sludge amended with coal fly ash can reduce the availability of Cu, Zn, Ni and Cd in the sludge. Increasing fly ash amendment rate significantly reduced DTPA-extractable Cu, Zn, Ni and Cd concentrations. Percentages of Cu, Zn and Ni in residual fraction increased with an increase in fly ash amendment rates. Majority of Cu was associated with organic form, but Zn and Ni were associated with Fe-Mn oxide and residual forms. Addition of ash-amended sludge to soil significantly increased dry mass of corn. With coal fly ash amendment rate increasing, concentrations of Zn and Cu in shoot tissues of corn decreased significantly, but concentrations of Cd and Ni did not change significantly. Significant correlations were found between concentrations of Cu and Zn in corn shoot and oxide and total Cu fractions, and all chemical fractions of Zn in fly ash-stabilized sludge, respectively. Hence, ash amendment significantly reduced the availability of heavy metals by chemical modification of their chemical speciation into less available forms. This article was published in Environ Int and referenced in Journal of Bioremediation & Biodegradation

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords