alexa CHIP regulates leucine-rich repeat kinase-2 ubiquitination, degradation, and toxicity.
Neurology

Neurology

Journal of Alzheimers Disease & Parkinsonism

Author(s): Ko HS, Bailey R, Smith WW, Liu Z, Shin JH,

Abstract Share this page

Abstract Mutation in leucine-rich repeat kinase-2 (LRRK2) is the most common cause of late-onset Parkinson's disease (PD). Although most cases of PD are sporadic, some are inherited, including those caused by LRRK2 mutations. Because these mutations may be associated with a toxic gain of function, controlling the expression of LRRK2 may decrease its cytotoxicity. Here we show that the carboxyl terminus of HSP70-interacting protein (CHIP) binds, ubiquitinates, and promotes the ubiquitin proteasomal degradation of LRRK2. Overexpression of CHIP protects against and knockdown of CHIP exacerbates toxicity mediated by mutant LRRK2. Moreover, HSP90 forms a complex with LRRK2, and inhibition of HSP90 chaperone activity by 17AAG leads to proteasomal degradation of LRRK2, resulting in increased cell viability. Thus, increasing CHIP E3 ligase activity and blocking HSP90 chaperone activity can prevent the deleterious effects of LRRK2. These findings point to potential treatment options for LRRK2-associated PD.
This article was published in Proc Natl Acad Sci U S A and referenced in Journal of Alzheimers Disease & Parkinsonism

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords