alexa Chipping away at gamma-H2AX foci.
Molecular Biology

Molecular Biology

Cell & Developmental Biology

Author(s): Savic V, Sanborn KB, Orange JS, Bassing CH

Abstract Share this page

Abstract The mammalian histone H2AX protein functions as a dosage-dependent genomic caretaker and tumor suppressor. Phosphorylation of H2AX to form gamma-H2AX in chromatin around DNA double strand breaks (DSBs) is an early event following induction of these hazardous lesions. For a decade, mechanisms that regulate H2AX phosphorylation have been investigated mainly through two-dimensional immunofluorescence (IF). We recently used chromatin immunoprecipitation (ChIP) to measure gamma-H2AX densities along chromosomal DNA strands broken in G(1) phase mouse lymphocytes. Our experiments revealed that (1) gamma-H2AX densities in nucleosomes form at high levels near DSBs and at diminishing levels farther and farther away from DNA ends, and (2) ATM regulates H2AX phosphorylation through both MDC1-dependent and MDC1-independent means. Neither of these mechanisms were discovered by previous if studies due to the inherent limitations of light microscopy. Here, we compare data obtained from parallel gamma-H2AX ChIP and three-dimensional IF analyses and discuss the impact of our findings upon molecular mechanisms that regulate H2AX phosphorylation in chromatin around DNA breakage sites.
This article was published in Cell Cycle and referenced in Cell & Developmental Biology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords