alexa Cholesterol efflux alters lipid raft stability and distribution during capacitation of boar spermatozoa.
Molecular Biology

Molecular Biology

Journal of Cytology & Histology

Author(s): Shadan S, James PS, Howes EA, Jones R

Abstract Share this page

Abstract A reduction in plasma membrane cholesterol is one of the early events that either triggers or is closely associated with capacitation of mammalian spermatozoa. In this investigation, we have examined the effects of cholesterol efflux on tyrosine phosphorylation, lipid diffusion, and raft organization in boar spermatozoa. Results show that a low level of cholesterol efflux, mediated by 5 mM methyl-beta-cyclodextrin (MBCD), enhances capacitation and induces phosphorylation of two proteins at 26 and 15 kDa without affecting sperm viability. Lipid diffusion rates under these conditions are largely unaffected except when cholesterol efflux is excessive. Low-density Triton X100-insoluble complexes (lipid rafts) were isolated from spermatozoa and found to have a restricted profile of proteins. Capacitation-associated cholesterol efflux has no effect on raft composition, but cholesterol depletion destabilizes them completely and phosphorylation is suppressed. During MBCD-mediated capacitation, the distribution of GM1 gangliosides on spermatozoa changes in a sequential manner from overlying the sperm tail to clustering on the sperm head. It is concluded that there is a safe window for removal of plasma membrane cholesterol from spermatozoa within which protein phosphorylation and polarized migration of lipid rafts take place. A preferential loss of cholesterol from the nonraft pool may be the stimulus that promotes raft clustering over the anterior sperm head. This article was published in Biol Reprod and referenced in Journal of Cytology & Histology

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version