alexa Choline kinase inhibition induces the increase in ceramides resulting in a highly specific and selective cytotoxic antitumoral strategy as a potential mechanism of action.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Proteomics & Bioinformatics

Author(s): RodrguezGonzlez A, Ramirez de Molina A, Fernndez F, Lacal JC

Abstract Share this page

Abstract Choline kinase (ChoK, E.C. 2.7.1.32) is involved in the synthesis of phosphatidylcholine (PC), and has been found to be increased in human tumors and tumor-derived cell lines. Furthermore, ChoK inhibitors have been reported to show a potent and selective antitumoral activity both in vitro and in vivo. Here, we provide the basis for a rational understanding of the antitumoral activity of ChoK inhibitors. In normal cells, blockage of de novo phosphorylcholine (PCho) synthesis by inhibition of ChoK promotes the dephosphorylation of pRb, resulting in a reversible cell cycle arrest at G0/G1 phase. In contrast, ChoK inhibition in tumor cells renders cells unable to arrest in G0/G1 as manifested by a lack of pRb dephosphorylation. Furthermore, tumor cells specifically suffer a drastic wobble in the metabolism of main membrane lipids PC and sphingomyelin (SM). This lipid disruption results in the enlargement of the intracellular levels of ceramides. As a consequence, normal cells remain unaffected, but tumor cells are promoted to apoptosis. Thus, we provide in this study the rationale for the potential clinical use of ChoK inhibitors. This article was published in Oncogene and referenced in Journal of Proteomics & Bioinformatics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 9th International Conference on Bioinformatics
    October 23-24, 2017 Paris, France
  • 9th International Conference and Expo on Proteomics
    October 23-25, 2017 Paris, France

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords