alexa Chromosomal changes: induction, detection methods and applicability in human biomonitoring.
Pharmaceutical Sciences

Pharmaceutical Sciences

Journal of Bioequivalence & Bioavailability

Author(s): Mateuca R, Lombaert N, Aka PV, Decordier I, KirschVolders M

Abstract Share this page

Abstract The objective of this state of the art paper is to review the mechanisms of induction, the fate, the methodology, the sensitivity/specificity and predictivity of two major cytogenetic endpoints applied for genotoxicity studies and biomonitoring purposes: chromosome aberrations and micronuclei. Chromosomal aberrations (CAs) are changes in normal chromosome structure or number that can occur spontaneously or as a result of chemical/radiation treatment. Structural CAs in peripheral blood lymphocytes (PBLs), as assessed by the chromosome aberration (CA) assay, have been used for over 30 years in occupational and environmental settings as a biomarker of early effects of genotoxic carcinogens. A high frequency of structural CAs in lymphocytes (reporter tissue) is predictive of increased cancer risk, irrespective of the cause of the initial CA increase. Micronuclei (MN) are small, extranuclear bodies that arise in dividing cells from acentric chromosome/chromatid fragments or whole chromosomes/chromatids that lag behind in anaphase and are not included in the daughter nuclei in telophase. The cytokinesis-block micronucleus (CBMN) assay is the most extensively used method for measuring MN in human lymphocytes, and can be considered as a "cytome" assay covering cell proliferation, cell death and chromosomal changes. The key advantages of the CBMN assay lie in its ability to detect both clastogenic and aneugenic events and to identify cells which divided once in culture. Evaluation of the mechanistic origin of individual MN by centromere and kinetochore identification contributes to the high sensitivity of the method. A number of findings support the hypothesis of a predictive association between the frequency of MN in cytokinesis-blocked lymphocytes and cancer development. Recent advances in fluorescence in situ hybridization (FISH) and microarray technologies are modifying the nature of cytogenetics, allowing chromosome and gene identification on metaphase as well as in interphase. Automated scoring by flow cytometry and/or image analysis will enhance their applicability. This article was published in Biochimie and referenced in Journal of Bioequivalence & Bioavailability

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords