alexa Chronic intermittent ethanol exposure and its removal induce a different miRNA expression pattern in primary cortical neuronal cultures.


Journal of Addiction Research & Therapy

Author(s): Guo Y, Chen Y, Carreon S, Qiang M

Abstract Share this page

Abstract BACKGROUND: Increasing evidence indicates that repeated exposure to and withdrawal from alcohol can result in persistent molecular and cellular adaptations. One molecular adaptation that occurs is the regulation of gene expression, which is thought to lead to the functional alterations that characterize addiction: tolerance, dependence, withdrawal, craving, and relapse. MicroRNAs (miRNAs) have been recently identified as master regulators of gene expression through post-transcriptional regulation. However, the role of miRNAs in the neuroadaptations after alcohol removal has not yet been directly addressed. METHODS: We employed a chronic intermittent ethanol (CIE) model in primary cortical neuronal cultures to examine the global extent of differential miRNA expression using a TaqMan real-time PCR miRNA array. RESULTS: Sixty-two miRNAs were differentially expressed after 10 days of CIE (CIE10) treatment (n = 42 with false discovery rate [FDR] < 0.05 and fold change > 2) and 5 days post-CIE (P5) treatment (n = 26) compared with untreated control values. Compared to CIE10, ethanol (EtOH) removal experience in P5 induced a distinct expression pattern, including 20 differentially expressed miRNAs, which did not exhibit a significant change at CIE10. The predicted target molecules of EtOH removal-induced miRNAs function mainly in the regulation of gene transcription, but also function in neuron differentiation, embryonic development, protein phosphorylation, and synaptic plasticity. Interestingly, some of the miRNAs differentially expressed 5 days after CIE treatment were found to cluster on chromosomes near CpG islands, suggesting that they share functional similarity by targeting alcohol-related genes. CONCLUSIONS: Taken together, these results suggest a potential role of differentially expressed miRNAs in mediating EtOH removal-related phenotypes. Copyright © 2011 by the Research Society on Alcoholism.
This article was published in Alcohol Clin Exp Res and referenced in Journal of Addiction Research & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version