alexa Circadian clock disruption improves the efficacy of chemotherapy through p73-mediated apoptosis.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Computer Science & Systems Biology

Author(s): Lee JH, Sancar A

Abstract Share this page

Abstract The circadian clock in mammalian organisms is generated by a transcription-translation feedback loop that controls many biochemical pathways at the cellular level and physiology and behavior at the organismal level. Cryptochrome (Cry) is a key protein in the negative arm of the transcription-translation feedback loop. It has been found that Cry mutation in cells with p53-null genotype increased their sensitivity to apoptosis by genotoxic agents. Here we show that this increased sensitivity is due to up-regulation of the p53 gene family member p73 in response to DNA damage. As a consequence, when tumors arising from oncogenic Ras-transformed p53(-/-) and p53(-/-)Cry1(-/-)Cry2(-/-) cells are treated with the anticancer drug oxaliplatin, p53(-/-) tumors continue to grow whereas p53(-/-)Cry1(-/-)Cry2(-/-) tumors exhibit extensive apoptosis and stop growing. This finding provides a mechanistic foundation for overcoming the resistance of p53-deficient tumor cells to apoptosis induced by DNA-damaging agents and suggests that disruption of cryptochrome function may increase the sensitivity of tumors with p53 mutation to chemotherapy.
This article was published in Proc Natl Acad Sci U S A and referenced in Journal of Computer Science & Systems Biology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords