alexa Cisplatin and oxaliplatin inhibit gap junctional communication by direct action and by reduction of connexin expression, thereby counteracting cytotoxic efficacy.


Journal of Cancer Science & Therapy

Author(s): Wang Q, You T, Yuan D, Han X, Hong X,

Abstract Share this page

Abstract Cisplatin [cis-diamminedichloroplatinum(II)]/oxaliplatin [1,2-diamminocyclohexane(trans-1)oxolatoplatinum(II)] toxicity is enhanced by functional gap junctions between treated cells, implying that inhibition of gap junctions may decrease cytotoxic activity of these platinum-based agents. This study investigates the effect of gap junction modulation by cisplatin/oxaliplatin on cytotoxicity in a transformed cell line. The effects were explored using junctional channels expressed in transfected HeLa cells and purified hemichannels. Junctional channels showed a rapid, dose-dependent decrease in dye coupling with exposure to cisplatin/oxaliplatin. With longer exposure, both compounds also decreased connexin expression. Both compounds inhibit the activity of purified connexin hemichannels, over the same concentration range that they inhibit junctional dye permeability, demonstrating that inhibition occurs by direct interaction of the drugs with connexin protein. Cisplatin/oxaliplatin reduced the clonogenic survival of HeLa cells at low density and high density in a dose-dependent manner, but to a greater degree at high density, consistent with a positive effect of gap junctional intercellular communication (GJIC) on cytotoxicity. Reduction of GJIC by genetic or pharmacological means decreased cisplatin/oxaliplatin toxicity. At low cisplatin/oxaliplatin concentrations, where effects on connexin channels are minimal, the toxicity increased with increased cell density. However, higher concentrations strongly inhibited GJIC, and this counteracted the enhancing effect of greater cell density on toxicity. The present results indicate that inhibition of GJIC by cisplatin/oxaliplatin decreases their cytotoxicity. Direct inhibition of GJIC and reduction of connexin expression by cisplatin/oxaliplatin may thereby compromise the effectiveness of these compounds and be a factor in the development of resistance to this class of chemotherapeutic agents. This article was published in J Pharmacol Exp Ther and referenced in Journal of Cancer Science & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version