alexa Citrate-capped silver nanoparticles showing good bactericidal effect against both planktonic and sessile bacteria and a low cytotoxicity to osteoblastic cells.
Materials Science

Materials Science

Journal of Nanomedicine & Nanotechnology

Author(s): Flores CY, Min AG, Grillo CA, Salvarezza RC, Vericat C,

Abstract Share this page

Abstract A common problem with implants is that bacteria can form biofilms on their surfaces, which can lead to infection and, eventually, to implant rejection. An interesting strategy to inhibit bacterial colonization is the immobilization of silver (Ag) species on the surface of the devices. The aim of this paper is to investigate the action of citrate-capped silver nanoparticles (AgNPs) on clinically relevant Gram-positive (Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa) bacteria in two different situations: (i) dispersed AgNPs (to assess the effect of AgNPs against planktonic bacteria) and (ii) adsorbed AgNPs on titanium (Ti) substrates, a material widely used for implants (to test their effect against sessile bacteria). In both cases, the number of surviving cells was quantified. The small amount of Ag on the surface of Ti has an antimicrobial effect similar to that of pure Ag surfaces. We have also investigated the capability of AgNPs to kill planktonic bacteria and their cytotoxic effect on UMR-106 osteoblastic cells. The minimum bactericidal concentration found for both strains is much lower than the AgNP concentration that leads to cytotoxicity to osteoblasts. Planktonic P. aeruginosa show a higher susceptibility to Ag than S. aureus, which can be caused by the different wall structures, while for sessile bacteria, similar results are obtained for both strains. This can be explained by the presence of extracellular polymeric substances in the early stages of P. aeruginosa biofilm formation. Our findings can be important to improving the performance of Ti-based implants because a good bactericidal action is obtained with very small quantities of Ag, which are not detrimental to the cells involved in the osseointegration process. This article was published in ACS Appl Mater Interfaces and referenced in Journal of Nanomedicine & Nanotechnology

Relevant Expert PPTs

Recommended Conferences

  • Nano Congress for Next Generation
    August 31-September 01, 2017 Brussels,Belgium
  • Graphene & 2D Materials
    September 14-15, 2017 Edinburgh, Scotland
Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version