alexa Clarifying the importance of CYP2C19 and PON1 in the mechanism of clopidogrel bioactivation and in vivo antiplatelet response.
Clinical Sciences

Clinical Sciences

Cardiovascular Pharmacology: Open Access

Author(s): Gong IY, Crown N, Suen CM, Schwarz UI, Dresser GK,

Abstract Share this page

Abstract AIMS: It is thought that clopidogrel bioactivation and antiplatelet response are related to cytochrome P450 2C19 (CYP2C19). However, a recent study challenged this notion by proposing CYP2C19 as wholly irrelevant, while identifying paraoxonase-1 (PON1) and its Q192R polymorphism as the major driver of clopidogrel bioactivation and efficacy. The aim of this study was to systematically elucidate the mechanism and relative contribution of PON1 in comparison to CYP2C19 to clopidogrel bioactivation and antiplatelet response. METHODS AND RESULTS: First, the influence of CYP2C19 and PON1 polymorphisms and plasma paraoxonase activity on clopidogrel active metabolite (H4) levels and antiplatelet response was assessed in a cohort of healthy subjects (n = 21) after administration of a single 75 mg dose of clopidogrel. There was a remarkably good correlation between H4 AUC (0-8 h) and antiplatelet response (r2 = 0.78). Furthermore, CYP2C19 but not PON1 genotype was predictive of H4 levels and antiplatelet response. There was no correlation between plasma paraoxonase activity and H4 levels. Secondly, metabolic profiling of clopidogrel in vitro confirmed the role of CYP2C19 in bioactivating clopidogrel to H4. However, heterologous expression of PON1 in cell-based systems revealed that PON1 cannot generate H4, but mediates the formation of another thiol metabolite, termed Endo. Importantly, Endo plasma levels in humans are nearly 20-fold lower than H4 and was not associated with any antiplatelet response. CONCLUSION: Our results demonstrate that PON1 does not mediate clopidogrel active metabolite formation or antiplatelet action, while CYP2C19 activity and genotype remains a predictor of clopidogrel pharmacokinetics and antiplatelet response. This article was published in Eur Heart J and referenced in Cardiovascular Pharmacology: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords