alexa Classification of G-protein coupled receptors at four levels.


Medicinal Chemistry

Author(s): Gao QB, Wang ZZ

Abstract Share this page

Abstract G-protein coupled receptors (GPCRs) are transmembrane proteins which via G-proteins initiate some of the important signaling pathways in a cell and are involved in various physiological processes. Thus, computational prediction and classification of GPCRs can supply significant information for the development of novel drugs in pharmaceutical industry. In this paper, a nearest neighbor method has been introduced to discriminate GPCRs from non-GPCRs and subsequently classify GPCRs at four levels on the basis of amino acid composition and dipeptide composition of proteins. Its performance is evaluated on a non-redundant dataset consisted of 1406 GPCRs for six families and 1406 globular proteins using the jackknife test. The present method based on amino acid composition achieved an overall accuracy of 96.4\% and Matthew's correlation coefficient (MCC) of 0.930 for correctly picking out the GPCRs from globular proteins. The overall accuracy and MCC were further enhanced to 99.8\% and 0.996 by dipeptide composition-based method. On the other hand, the present method has successfully classified 1406 GPCRs into six families with an overall accuracy of 89.6 and 98.8\% using amino acid composition and dipeptide composition, respectively. For the subfamily prediction of 1181 GPCRs of rhodopsin-like family, the present method achieved an overall accuracy of 76.7 and 94.5\% based on the amino acid composition and dipeptide composition, respectively. Finally, GPCRs belonging to the amine subfamily and olfactory subfamily of rhodopsin-like family were further analyzed at the type level. The overall accuracy of dipeptide composition-based method for the classification of amine type and olfactory type of GPCRs reached 94.5 and 86.9\%, respectively, while the overall accuracy of amino acid composition-based method was very low for both subfamilies. In comparison with existing methods in the literature, the present method also displayed great competitiveness. These results demonstrate the effectiveness of our method on identifying and classifying GPCRs correctly. GPCRsIdentifier, a corresponding stand-alone executable program for GPCR identification and classification was also developed, which can be acquired freely on request from the authors for academic purposes. This article was published in Protein Eng Des Sel and referenced in Medicinal Chemistry

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version