alexa Classification of water molecules in protein binding sites.
Biochemistry

Biochemistry

Biochemistry & Analytical Biochemistry

Author(s): Barillari C, Taylor J, Viner R, Essex JW

Abstract Share this page

Abstract Water molecules play a crucial role in mediating the interaction between a ligand and a macromolecular receptor. An understanding of the nature and role of each water molecule in the active site of a protein could greatly increase the efficiency of rational drug design approaches: if the propensity of a water molecule for displacement can be determined, then synthetic effort may be most profitably applied to the design of specific ligands with the displacement of this water molecule in mind. In this paper, a thermodynamic analysis of water molecules in the binding sites of six proteins, each complexed with a number of inhibitors, is presented. Two classes of water molecules were identified: those conserved and not displaced by any of the ligands, and those that are displaced by some ligands. The absolute binding free energies of 54 water molecules were calculated using the double decoupling method, with replica exchange thermodynamic integration in Monte Carlo simulations. It was found that conserved water molecules are on average more tightly bound than displaced water molecules. In addition, Bayesian statistics is used to calculate the probability that a particular water molecule may be displaced by an appropriately designed ligand, given the calculated binding free energy of the water molecule. This approach therefore allows the numerical assessment of whether or not a given water molecule should be targeted for displacement as part of a rational drug design strategy. This article was published in J Am Chem Soc and referenced in Biochemistry & Analytical Biochemistry

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords