alexa Climate change effects on trematodiases, with emphasis on zoonotic fascioliasis and schistosomiasis.
Immunology

Immunology

Journal of Clinical & Cellular Immunology

Author(s): MasComa S, Valero MA, Bargues MD

Abstract Share this page

Abstract The capacity of climatic conditions to modulate the extent and intensity of parasitism is well known since long ago. Concerning helminths, among the numerous environmental modifications giving rise to changes in infections, climate variables appear as those showing a greater influence, so that climate change may be expected to have an important impact on the diseases they cause. However, the confirmation of the impact of climate change on helminthiases has been reached very recently. Only shortly before, helminthiases were still noted as infectious diseases scarcely affected by climate change, when compared to diseases caused by microorganisms in general (viruses, bacteriae, protozoans). The aim of the present paper is to review the impact of climate change on helminthiases transmitted by snails, invertebrates which are pronouncedly affected by meteorological factors, by focusing on trematodiases. First, the knowledge on the effects of climate change on trematodiases in general is reviewed, including aspects such as influence of temperature on cercarial output, cercarial production variability in trematode species, influences of magnitude of cercarial production and snail host size, cercarial quality, duration of cercarial production increase and host mortality, influence of latitude, and global-warming-induced impact of trematodes. Secondly, important zoonotic diseases such as fascioliasis, schistosomiasis and cercarial dermatitis are analysed from the point of view of their relationships with meteorological factors. Emphasis is given to data which indicate that climate change influences the characteristics of these trematodiases in concrete areas where these diseases are emerging in recent years. The present review shows that trematodes, similarly as other helminths presenting larval stages living freely in the environment and/or larval stages parasitic in invertebrates easily affected by climate change as arthropods and molluscs as intermediate hosts, may be largely more susceptible to climate change impact than those helminths in whose life cycle such phases are absent or reduced to a minimum. Although helminths also appear to be affected by climate change, their main difference with microparasites lies on the usually longer life cycles of helminths, with longer generation times, slower population growth rates and longer time period needed for the response in the definitive host to become evident. Consequently, after a pronounced climate change in a local area, modifications in helminth populations need more time to be obvious or detectable than modifications in microparasite populations. Similarly, the relation of changes in a helminthiasis with climatic factor changes, as extreme events elapsed relatively long time ago, may be overlooked if not concretely searched for. All indicates that this phenomenon has been the reason for previous analyses to conclude that helminthiases do not constitute priority targets in climate change impact studies. This article was published in Vet Parasitol and referenced in Journal of Clinical & Cellular Immunology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords