alexa Clinically immune hosts as a refuge for drug-sensitive malaria parasites.
Infectious Diseases

Infectious Diseases

Malaria Control & Elimination

Author(s): Klein EY, Smith DL, Boni MF, Laxminarayan R

Abstract Share this page

Abstract BACKGROUND: Mutations in Plasmodium falciparum that confer resistance to first-line antimalarial drugs have spread throughout the world from a few independent foci, all located in areas that were likely characterized by low or unstable malaria transmission. One of the striking differences between areas of low or unstable malaria transmission and hyperendemic areas is the difference in the size of the population of immune individuals. However, epidemiological models of malaria transmission have generally ignored the role of immune individuals in transmission, assuming that they do not affect the fitness of the parasite. This model reconsiders the role of immunity in the dynamics of malaria transmission and its impact on the evolution of antimalarial drug resistance under the assumption that immune individuals are infectious. METHODS: The model is constructed as a two-stage susceptible-infected-susceptible (SIS) model of malaria transmission that assumes that individuals build up clinical immunity over a period of years. This immunity reduces the frequency and severity of clinical symptoms, and thus their use of drugs. It also reduces an individual's level of infectiousness, but does not impact the likelihood of becoming infected. RESULTS: Simulations found that with the introduction of resistance into a population, clinical immunity can significantly alter the fitness of the resistant parasite, and thereby impact the ability of the resistant parasite to spread from an initial host by reducing the effective reproductive number of the resistant parasite as transmission intensity increases. At high transmission levels, despite a higher basic reproductive number, R0, the effective reproductive number of the resistant parasite may fall below the reproductive number of the sensitive parasite. CONCLUSION: These results suggest that high-levels of clinical immunity create a natural ecological refuge for drug-sensitive parasites. This provides an epidemiological rationale for historical patterns of resistance emergence and suggests that future outbreaks of resistance are more likely to occur in low- or unstable-transmission settings. This finding has implications for the design of drug policies and the formulation of malaria control strategies, especially those that lower malaria transmission intensity.
This article was published in Malar J and referenced in Malaria Control & Elimination

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords