alexa Cloning of Candida albicans genes conferring resistance to azole antifungal agents: characterization of CDR2, a new multidrug ABC transporter gene.
Microbiology

Microbiology

Journal of Microbial & Biochemical Technology

Author(s): Sanglard D, Ischer F, Monod M, Bille J

Abstract Share this page

Abstract Resistance to azole antifungal agents in Candida albicans can be mediated by multidrug efflux transporters. In a previous study, we identified at least two such transporters, Cdr1p and Benp, which belong to the class of ATP-binding cassette (ABC) transporters and of major facilitators, respectively. To isolate additional factors potentially responsible for resistance to azole antifungal agents in C. albicans, the hypersusceptibility of a Saccharomyces cerevisiae multidrug transporter mutant, delta pdr5, to these agents was complemented with a C. albicans genomic library. Several new genes were isolated, one of which was a new ABC transporter gene called CDR2 (Candida drug resistance). The protein Cdr2p encoded by this gene exhibited 84\% identity with Cdr1p and could confer resistance to azole antifungal agents, to other antifungals (terbinafine, amorolfine) and to a variety of metabolic inhibitors. The disruption of CDR2 in the C. albicans strain CAF4-2 did not render cells more susceptible to these substances. When the disruption of CDR2 was performed in the background of a mutant in which CDR1 was deleted, the resulting double delta cdr1 delta cdr2 mutant was more susceptible to these agents than the single delta cdr1 mutant. The absence of hypersusceptibility of the single delta cdr2 mutant could be explained by the absence of CDR2 mRNA in azole-susceptible C. albicans strains. CDR2 was overexpressed, however, in clinical C. albicans isolates resistant to azole antifungal agents as described previously for CDR1, but to levels exceeding or equal to those reached by CDR1. Interestingly, CDR2 expression was restored in delta cdr1 mutants reverting spontaneously to wild-type levels of susceptibility to azole antifungal agents. These data demonstrate that CDR2 plays an important role in mediating the resistance of C. albicans to azole antifungal agents. This article was published in Microbiology and referenced in Journal of Microbial & Biochemical Technology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords