alexa Co-chaperone CHIP promotes aggregation of ataxin-1.
Neurology

Neurology

Journal of Alzheimers Disease & Parkinsonism

Author(s): Choi JY, Ryu JH, Kim HS, Park SG, Bae KH,

Abstract Share this page

Abstract Recent studies demonstrated that co-chaperone/E3 ligase CHIP (C-terminus of hsp70-interacting protein) mediates the ubiquitylation and suppresses the aggregation of polyglutamine (polyQ) proteins, such as huntingtin or ataxin-3. In this study, we investigated the effects of CHIP on the degradation of another polyQ protein ataxin-1. Interestingly CHIP associates not only with the polyQ-expanded ataxin-1 but also with the normal ataxin-1. Moreover, by enhancing ataxin-1 ubiquitylation, CHIP over-expression leads to a reduction in the solubility of ataxin-1 and thus increases the aggregate formation, especially that of polyQ-expanded ataxin-1. Domain analysis revealed that the TPR domain is required for the promotion of aggregation. By contrast, other co-chaperones or E3 ligases, such as BAG-1 or parkin, did not show similar effects on the aggregation of ataxin-1. Importantly, the effect of CHIP is impaired by the mutation of Ser776 of ataxin-1 whose phosphorylation is crucial for ataxin-1 aggregation. Our findings suggest that the role of CHIP in aggregation of polyQ proteins greatly varies depending on the context of full-length polyQ proteins. This article was published in Mol Cell Neurosci and referenced in Journal of Alzheimers Disease & Parkinsonism

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords