alexa Cohomology of Lie superalgebras and of their generalizations


Journal of Generalized Lie Theory and Applications

Author(s): M Scheunert, RB Zhang

Abstract Share this page

The cohomology groups of Lie superalgebras and, more generally, of color Lie algebras, are introduced and investigated. The main emphasis is on the case where the module of coefficients is non-trivial. Two general propositions are proved, which help to calculate the cohomology groups. Several examples are included to show the peculiarities of the super case. For L = sl(1|2), the cohomology groups H^1(L,V) and H^2(L,V), with V a finite-dimensional simple graded L-module, are determined, and the result is used to show that H^2(L,U(L)) (with U(L) the enveloping algebra of L) is trivial. This implies that the superalgebra U(L) does not admit of any non-trivial formal deformations (in the sense of Gerstenhaber). Garland's theory of universal central extensions of Lie algebras is generalized to the case of color Lie algebras.

This article was published in Journal of Mathematical Physics 39: 5024-5061. and referenced in Journal of Generalized Lie Theory and Applications

Relevant Expert PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version