alexa Collagen-dependent neurite outgrowth and response to dynamic deformation in three-dimensional neuronal cultures.
Neurology

Neurology

International Journal of Neurorehabilitation

Author(s): Cullen DK, Lessing MC, LaPlaca MC

Abstract Share this page

Abstract In vitro models of brain injury that use thick 3-D cultures and control extracellular matrix constituents allow evaluation of cell-matrix interactions in a more physiologically relevant configuration than traditional 2-D cultures. We have developed a 3-D cell culture system consisting of primary rat cortical neurons distributed throughout thick (>500 microm) gels consisting of type IV collagen (Col) conjugated to agarose. Neuronal viability and neurite outgrowth were examined for a range of agarose (AG) percentages (1.0-3.0\%) and initial collagen concentrations ([Col](i); 0-600 microg/mL). In unmodified AG, 1.5\% gels supported viable cultures with significant neurite outgrowth, which was not found at lower (< or =1.0\%) concentrations. Varying [Col](i )in 1.25\% AG revealed the formation of dense, 3-D neurite networks at [Col](i) of 300 microg/mL, while neurons in unmodified AG and at higher [Col](i) (600 microg/mL) exhibited significantly less neurite outgrowth; although, neuronal survival did not vary with [Col](i). The effect of [Col](i) on acute neuronal response following high magnitude, high rate shear deformation (0.50 strain, 30 s(-1) strain rate) was evaluated in 1.5\% AG for [Col](i) of 30, 150, and 300 microg/mL, which supported cultures with similar baseline viability and neurite outgrowth. Conjugation of Col to AG also increased the complex modulus of the hydrogel. Following high rate deformation, neuronal viability significantly decreased with increasing [Col](i), implicating cell-matrix adhesions in acute mechanotransduction events associated with traumatic loading. These results suggest interrelated roles for matrix mechanical properties and receptor-mediated cell-matrix interactions in neuronal viability, neurite outgrowth, and transduction of high rate deformation. This model system may be further exploited for the elucidation of mechanotransduction mechanisms and cellular pathology following mechanical insult. This article was published in Ann Biomed Eng and referenced in International Journal of Neurorehabilitation

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords