alexa Colour removal from a simulated dye wastewater using a two-phase anaerobic packed bed reactor.
Environmental Sciences

Environmental Sciences

Journal of Bioremediation & Biodegradation

Author(s): Mahdavi Talarposhti A, Donnelly T, Anderson GK

Abstract Share this page

Abstract In recent years, rapid technological advances in the textile and dyeing industry have yielded benefits to society but have also generated new and significant environmental problems. The treatment alternatives applicable for the removal of colour vary, depending upon the type of dye wastewater. A synthetic, simulated mixed dye waste (Basic Yellow 28, Basic Yellow 21, Basic Red 18.1, Basic Violet Red 16, Basic Red 46, Basic Blue 16, Basic Blue 41) representing a known waste from a fibre production factory, was investigated. The biological process of anaerobic digestion has been recognised as a simple and energy-efficient means of treating and stabilising a wide range of organic industrial wastewaters. This study sets out to demonstrate the effect of different loading rates, dye concentrations and hydraulic retention times (HRTs) on colour removal efficiency under mesophilic anaerobic conditions. The reactor was operated under mesophilic conditions at different organic loading rates (OLRs) and HRTs for nine months. The results of this study show that a 2-stage mesophilic anaerobic up-flow packed bed reactor can remove up to 90\% of the colour from a mixed cationic dye containing 1000 mg/l of dye. Colour removal efficiency falls as the influent dye concentration increases, but rises with increased hydraulic retention time and increased organic loading. The primary colour removal mechanism was one of biosorption with subsequent biodegradation. Acetoclastic methanogens were moderately inhibited at low organic loading rates of 0.25 kg COD/m3 d, at which level, acidogenesis and acetogenesis appeared to be unaffected. Inhibition of acidogenesis became marked at higher OLRs (1 kg COD/m3 d) and when the HRT was reduced from 5 to 3 days.
This article was published in Water Res and referenced in Journal of Bioremediation & Biodegradation

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 6th World Congress on Biofuels and Bioenergy
    Sep 5-6, 2017 London, UK
  • 6th World Congress on Biopolymers
    September 7-9, 2017 Paris, France
  • 7th International Conference and Exhibition on Biopolymers and Bioplastics
    October 19-21, 2017 San Francisco, USA

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version