alexa Combination of hTERT knockdown and IFN-gamma treatment inhibited angiogenesis and tumor progression in glioblastoma.
Oncology

Oncology

Journal of Cancer Science & Therapy

Author(s): George J, Banik NL, Ray SK, George J, Banik NL, Ray SK

Abstract Share this page

Abstract PURPOSE: The limitless invasive and proliferative capacities of tumor cells are associated with telomerase and expression of its catalytic component, human telomerase reverse transcriptase (hTERT). IFN-gamma modulates several cellular activities, including signaling pathways and cell cycle, through transcriptional regulation. EXPERIMENTAL DESIGN: Using a recombinant plasmid with hTERT siRNA cDNA, we downregulated hTERT during IFN-gamma treatment in human glioblastoma SNB-19 and LN-18 cell lines and examined whether such a combination could inhibit angiogenesis and tumor growth in nude mice. In vitro angiogenesis assay was done using coculture of tumor cells with human microvascular endothelial cells. In vivo angiogenesis assay was done using diffusion chambers under the dorsal skin of nude mice. In vivo imaging of intracerebral tumorigenesis and longitudinal solid tumor development studies were conducted in nude mice. RESULTS: In vitro and in vivo angiogenesis assays showed inhibition of capillary-like network formation of microvascular endothelial cells and neovascularization under dorsal skin of nude mice, respectively. We observed inhibition of intracerebral tumorigenesis and s.c. solid tumor formation in nude mice after treatment with combination of hTERT siRNA and IFN-gamma. Western blotting of solid tumor samples showed significant downregulation of the molecules that regulate cell invasion, angiogenesis, and tumor progression. CONCLUSIONS: Our study showed that the combination of hTERT siRNA and IFN-gamma effectively inhibited angiogenesis and tumor progression through the downregulation of molecules involved in these processes. Therefore, the combination of hTERT siRNA and IFN-gamma is a promising therapeutic strategy for controlling the growth of human glioblastoma.
This article was published in Clin Cancer Res and referenced in Journal of Cancer Science & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords