alexa Combined enzymatic and mechanical cell disruption and lipid extraction of green alga Neochloris oleoabundans.
Environmental Sciences

Environmental Sciences

Journal of Fundamentals of Renewable Energy and Applications

Author(s): Wang D, Li Y, , Hu X, Su W,

Abstract Share this page

Abstract Microalgal biodiesel is one of the most promising renewable fuels. The wet technique for lipids extraction has advantages over the dry method, such as energy-saving and shorter procedure. The cell disruption is a key factor in wet oil extraction to facilitate the intracellular oil release. Ultrasonication, high-pressure homogenization, enzymatic hydrolysis and the combination of enzymatic hydrolysis with high-pressure homogenization and ultrasonication were employed in this study to disrupt the cells of the microalga Neochloris oleoabundans. The cell disruption degree was investigated. The cell morphology before and after disruption was assessed with scanning and transmission electron microscopy. The energy requirements and the operation cost for wet cell disruption were also estimated. The highest disruption degree, up to 95.41\%, assessed by accounting method was achieved by the combination of enzymatic hydrolysis and high-pressure homogenization. A lipid recovery of 92.6\% was also obtained by the combined process. The combined process was found to be more efficient and economical compared with the individual process.
This article was published in Int J Mol Sci and referenced in Journal of Fundamentals of Renewable Energy and Applications

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords