alexa Combining computer algorithms with experimental approaches permits the rapid and accurate identification of T cell epitopes from defined antigens.


Clinical Depression

Author(s): Schirle M, Weinschenk T, Stevanovi S

Abstract Share this page

Abstract The identification of T cell epitopes from immunologically relevant antigens remains a critical step in the development of vaccines and methods for monitoring of T cell responses. This review presents an overview of strategies that employ computer algorithms for the selection of candidate peptides from defined proteins and subsequent verification of their in vivo relevance by experimental approaches. Several computer algorithms are currently being used for epitope prediction of various major histocompatibility complex (MHC) class I and II molecules, based either on the analysis of natural MHC ligands or on the binding properties of synthetic peptides. Moreover, the analysis of proteasomal digests of peptides and whole proteins has led to the development of algorithms for the prediction of proteasomal cleavages. In order to verify the generation of the predicted peptides during antigen processing in vivo as well as their immunogenic potential, several experimental approaches have been pursued in the recent past. Mass spectrometry-based bioanalytical approaches have been used specifically to detect predicted peptides among isolated natural ligands. Other strategies employ various methods for the stimulation of primary T cell responses against the predicted peptides and subsequent testing of the recognition pattern towards target cells that express the antigen.
This article was published in J Immunol Methods and referenced in Clinical Depression

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version