alexa Combining PARP-1 inhibition and radiation in Ewing sarcoma results in lethal DNA damage.
Oncology

Oncology

Journal of Cancer Science & Therapy

Author(s): Lee HJ, Yoon C, Schmidt B, Park DJ, Zhang AY,

Abstract Share this page

Abstract Ewing sarcomas (ES) harbor a chromosomal translocation that fuses the EWS gene to an ETS transcription factor, most commonly Friend leukemia integration 1 (FLI1). The EWS-FLI1 fusion protein acts in a positive feedback loop to maintain the expression of PARP-1, which is involved in repair of DNA damage. Here, we examine the effects of PARP-1 inhibition and radiation therapy on Ewing sarcomas. In proliferation assays, the Ewing sarcoma cell lines RD-ES and SK-N-MC were much more sensitive than non-Ewing sarcoma cell lines to the PARP-1 inhibitor olaparib (Ola; IC50 0.5-1 μmol/L vs. >5 μmol/L) and to radiation (IC50 2-4 Gy vs. >6 Gy). PARP-1 inhibition with short hairpin RNA (shRNA) or Ola sensitized Ewing sarcoma cells, but not non-Ewing sarcoma cells, to radiation therapy in both proliferation and colony formation assays. Using the Comet assay, radiation of Ewing sarcoma cells with Ola, compared to without Ola, resulted in more DNA damage at 1 hour (mean tail moment 36-54 vs. 26-28) and sustained DNA damage at 24 hours (24-29 vs. 6-8). This DNA damage led to a 2.9- to 4.0-fold increase in apoptosis and a 1.6- to 2.4-fold increase in cell death. The effect of PARP-1 inhibition and radiation therapy on Ewing sarcoma cells was lost when EWS-FLI1 was silenced by shRNA. A small dose of radiation therapy (4 Gy), when combined with PARP-1 inhibition, stopped the growth of SK-N-MC flank tumors xenografts. In conclusion, PARP-1 inhibition in Ewing sarcomas amplifies the level and duration of DNA damage caused by radiation therapy, leading to synergistic increases in apoptosis and cell death in a EWS-FLI1-dependent manner. ©2013 AACR.
This article was published in Mol Cancer Ther and referenced in Journal of Cancer Science & Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords