alexa Common structural transitions in explicit-solvent simulations of villin headpiece folding.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Glycomics & Lipidomics

Author(s): Freddolino PL, Schulten K

Abstract Share this page

Abstract Molecular dynamics simulations of protein folding can provide very high-resolution data on the folding process; however, due to computational challenges most studies of protein folding have been limited to small peptides, or made use of approximations such as Gō potentials or implicit solvent models. We have performed a set of molecular dynamics simulations totaling >50 micros on the villin headpiece subdomain, one of the most stable and fastest-folding naturally occurring proteins, in explicit solvent. We find that the wild-type villin headpiece reliably folds to a native conformation on timescales similar to experimentally observed folding, but that a fast folding double-norleucine mutant shows significantly more heterogeneous behavior. Along with other recent simulation studies, we note the occurrence of nonnative structures intermediates, which may yield a nativelike signal in the fluorescence measurements typically used to study villin folding. Based on the wild-type simulations, we propose alternative approaches to measure the formation of the native state.

This article was published in Biophys J and referenced in Journal of Glycomics & Lipidomics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords