alexa Comparative analysis of machine learning techniques in prognosis of type II diabetes
Oncology

Oncology

Journal of HPV and Cervical Cancer

Author(s): Abid Sarwar, Vinod Sharma

Abstract Share this page

Artificial Intelligence (AI) is now a days gaining immense importance and is becoming a key technology in many fields ranging from banking industry, to travel industry, to communication industry, and to robotic industry. The use of AI in medical diagnosis too is becoming increasingly popular and has been widely used in the diagnosis of tumors, cancers, hepatitis, lung diseases, etc. Numerous algorithms have been designed that help in the process of decision making by analyzing the hidden patterns in previously held information. The main objective of this manuscript is to apply multiple algorithms to a problem in the domain of medical diagnosis and analyze their efficiency in predicting the results. The problem selected for the study is the diagnosis of diabetes. Authors have identified ten parameters that play an important role in diabetes and prepared a rich database of training data which served as the backbone of the prediction algorithms. Keeping in view this training data, authors implemented three algorithms [Naïve Bayes, artificial neural networks (ANN), and K-nearest neighbors (KNN)] and developed prediction models. To calculate the efficiency, the results of prediction system were compared with the actual medical diagnosis of the subjects. The results indicate that the ANN is the best predictor with the accuracy of about 96 % which was followed by Naïve Bayes networks having an accuracy of about 95 % and the KNN came to be the worst predictor having an accuracy of about 91 %.

This article was published in AI & Society and referenced in Journal of HPV and Cervical Cancer

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected].com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords