alexa Comparative analysis of several detectors for the measurement of radiation transmission and leakage from a multileaf collimator.


Journal of Nuclear Medicine & Radiation Therapy

Author(s): LrragaGutirrez JM, Galvn de la Cruz OO, GarcaGarduo OA, BallesterosZebada P

Abstract Share this page

Abstract The multileaf collimator (MLC) is the standard device used to shape radiation beams for 3-d conformal and intensity-modulated radiation therapy (IMRT). Due to the inherent properties of MLC, there is a small amount of radiation transmitted through the leaves, called radiation transmission (RT). Accurate measurements of this radiation are required to commission and validate IMRT-capable treatment planning systems because this radiation may impact the dosimetry of IMRT-calculated dose distributions. This work compares several detectors in the measurement of RT for a micro-multileaf collimation system. The results show that there are statistically significant differences in the measured RT values between detectors from 3.5 to 12.5\% for the same MLC model and less than 0.2\% relative to the isocentre dose for an open reference field. However, although small in magnitude, these differences may impact the dosimetry of IMRT treatment planning by up to 1.78 Gy to the healthy tissue surrounding the target for a treatment of 60 Gy in 30 fractions. By the later, these differences must be included as a source of uncertainty in IMRT dose delivery. Also, it must be established which detector offers the most reliable results in the measurement of the RT by using Monte Carlo simulation methods. Copyright © 2013 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved. This article was published in Phys Med and referenced in Journal of Nuclear Medicine & Radiation Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version