alexa Comparative chemometric modeling of cytochrome 3A4 inhibitory activity of structurally diverse compounds using stepwise MLR, FA-MLR, PLS, GFA, G PLS and ANN techniques.
Biomedical Sciences

Biomedical Sciences

Journal of Bioanalysis & Biomedicine

Author(s): Roy K, Pratim Roy P

Abstract Share this page

Abstract Twenty-eight structurally diverse cytochrome 3A4 (CYP3A4) inhibitors have been subjected to quantitative structure-activity relationship (QSAR) studies. The analyses were performed with electronic, spatial, topological, and thermodynamic descriptors calculated using Cerius 2 version 10 software. The statistical tools used were linear [multiple linear regression with factor analysis as preprocessing step (FA-MLR), stepwise MLR, partial least squares (PLS), genetic function algorithm (GFA), genetic PLS (G/PLS)] and non-linear methods [artificial neural network (ANN)]. All the five linear modeling methods indicate the importance of n-octanol/water partition coefficient (logP) along with different topological and electronic parameters. The best model obtained from the training set (stepwise regression) based on highest external predictive R(2) value and lowest RMSEP value also showed good internal predictive power. Other models like FA-MLR, PLS, GFA and G/PLS are also of statistically significant internal and external validation characteristics. The best model [according to r(m)(2) for the test set, as defined by P.P. Roy, K. Roy, QSAR Comb. Sci. 27 (2008) 302-313] obtained from ANN showed a good r(2) value (determination coefficient between observed and predicted values) for the test set compounds, which was superior to those of other statistical models except the stepwise regression derived model. However, based upon the r(m)(2) value (test set), which penalizes a model for large differences between observed and predicted values, the stepwise MLR model was found to be inferior to other methods except PLS. Considering r(m)(2) value for the whole set, the G/PLS derived model appears to be the best predictive model for this data set. For choosing the best predictive model from among comparable models, r(m)(2) for the whole set calculated based on leave-one-out predicted values of the training set and model-derived predicted values for the test set compounds is suggested to be a good criterion. This article was published in Eur J Med Chem and referenced in Journal of Bioanalysis & Biomedicine

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

agrifoodaquavet@omicsonline.com

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

clinical_biochem@omicsonline.com

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

business@omicsonline.com

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

chemicaleng_chemistry@omicsonline.com

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

environmentalsci@omicsonline.com

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

engineering@omicsonline.com

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

generalsci_healthcare@omicsonline.com

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

genetics_molbio@omicsonline.com

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

immuno_microbio@omicsonline.com

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

omics@omicsonline.com

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

materialsci@omicsonline.com

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

mathematics_physics@omicsonline.com

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

medical@omicsonline.com

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

neuro_psychology@omicsonline.com

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

pharma@omicsonline.com

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

social_politicalsci@omicsonline.com

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version