alexa Comparative fit indexes in structural models.
Business & Management

Business & Management

Journal of Tourism & Hospitality

Author(s): Bentler PM

Abstract Share this page

Abstract Normed and nonnormed fit indexes are frequently used as adjuncts to chi-square statistics for evaluating the fit of a structural model. A drawback of existing indexes is that they estimate no known population parameters. A new coefficient is proposed to summarize the relative reduction in the noncentrality parameters of two nested models. Two estimators of the coefficient yield new normed (CFI) and nonnormed (FI) fit indexes. CFI avoids the underestimation of fit often noted in small samples for Bentler and Bonett's (1980) normed fit index (NFI). FI is a linear function of Bentler and Bonett's non-normed fit index (NNFI) that avoids the extreme underestimation and overestimation often found in NNFI. Asymptotically, CFI, FI, NFI, and a new index developed by Bollen are equivalent measures of comparative fit, whereas NNFI measures relative fit by comparing noncentrality per degree of freedom. All of the indexes are generalized to permit use of Wald and Lagrange multiplier statistics. An example illustrates the behavior of these indexes under conditions of correct specification and misspecification. The new fit indexes perform very well at all sample sizes.
This article was published in Psychol Bull and referenced in Journal of Tourism & Hospitality

Relevant Expert PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords