alexa Comparative studies on inhibitors of HIV protease: a target for drug design.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Health & Medical Informatics

Author(s): Jayaraman S, Shah K

Abstract Share this page

Abstract Bioinformatics tools are employed lately for in silico structure-function analysis of proteins. HIV protease inhibitors nelfinavir and tipranavir belong to the extended multi-ring systems. The intermolecular interactions made by the functional groups of the different residues on the protein molecule are probed with the help of computational tools for protein homology studies so as to identify the functional residues, create single, double, triple mutations using, different bioinformatics servers and to observe the changes brought therein by docking. BLAST, RosettaDesign, PatchDock, Chimera were used in the present study for identifying the inhibitors as better drug targets. The HIV protease-nelfinavir complex (PDB code: 1OHR) and HIV protease V82F/I84V double mutant-tipranavir complex (PDB code: 1D4S) were used as templates for introducing mutations on the HIV protease active site. In this study a structure-based computer-assisted search for the comparison of the two inhibitors of HIV protease was carried out. The results suggest that the two inhibitors nelfinavir and tipranavir could be used for treatment of AIDS by targeting the enzyme HIV protease as neither of the two inhibitors exhibit any cross-reactivity with other human proteins, they readily bind to the mutated enzyme active site and still remain linked with the enzyme-substrate complex in the presence of water molecules. The inhibitor nelfinavir undergoes several changes in hydrogen bonds formation with the introduction of mutations on the HIV protease active site. It either has a positive or a negative inhibitory effect on HIV protease and forms new hydrogen bonds with a shorter bond lengths. Nelfinavir also seems to be an inhibitor of a more narrow specificity as it shows changes in binding bringing thereby conformational changes in the native enzyme. Tipranavir on the other hand seems to be a broad specificity inhibitor as no changes in the bond lengths with the introduction of mutations are observed. Of the two inhibitors tipranavir could be targeted more effectively for designing future drug analogues as it is less vulnerable to mutations. The HIV mutants reported herein could also be used for preliminary identification of specific inhibitors as drugs that may alter the HIV protease activity for medicinal use.
This article was published in In Silico Biol and referenced in Journal of Health & Medical Informatics

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords