alexa Comparative study on reaction selectivity of azo dye decolorization by Pseudomonas luteola.
Microbiology

Microbiology

Journal of Microbial & Biochemical Technology

Author(s): Hsueh CC, Chen BY

Abstract Share this page

Abstract This study is to inspect how the variation of molecular structures and functional groups present in our model azo dyes (i.e., Congo red, Eriochrome black T (EBT), methyl orange, and methyl red) affects biodecolorization capability of Pseudomonas luteola. The most viable decolorization was found at pH 7-9 and the optimal cellular age for the most effective decolorization was 7 days after static incubation in dye-free cultures. In decolorization, the maximal absorption wavelength in UV-vis spectra for the different dye-containing cultures shifted from visible light range towards the ultraviolet visible range. Methyl red was not decolorized in contrast to methyl orange, Congo red, and Eriochrome black T. The sulfonic group para to azo bond (-N=N-) in methyl orange was a strong electron-withdrawing group through resonance to cause an enhancement of color removal to be easily biodecolorized. As a charged carboxyl group on methyl red is at ortho position (i.e., in the proximity) to azo bond, this led to a complete inhibition to decolorization. However, decolorization of Congo red and EBT in the absence of charged group (e.g., hydroxy or amino group) near azo bond was not completely repressed like methyl red. Thus, the presence of electron-withdrawing groups as the substituents on azo dyes enhanced decolorization capability for biodegradability. In addition, Monod kinetic model provided better predictions to all dye decolorization at initial short periods of time due to negligible intermediate formed at initial short time duration, but significant intermediate accumulation took place at longer period of time. In contrast, the decolorization performances of methyl orange at 400ppm and EBT at 230ppm were significantly less than those predicted from the Monod kinetic model likely due to accumulated intermediates exceeding the threshold levels for feedback inhibition. This article was published in J Hazard Mater and referenced in Journal of Microbial & Biochemical Technology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri & Aquaculture Journals

Dr. Krish

[email protected]

1-702-714-7001Extn: 9040

Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001Extn: 9040

Clinical Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

Food & Nutrition Journals

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

General Science

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics & Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Materials Science Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Nursing & Health Care Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

Ann Jose

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001Extn: 9042

 
© 2008- 2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords