alexa Comparing the effects of weathering and microbial degradation on gasoline using principal components analysis.
Environmental Sciences

Environmental Sciences

Journal of Bioremediation & Biodegradation

Author(s): Turner DA, Goodpaster JV

Abstract Share this page

Abstract Ignitable liquid residues recovered from a fire scene will often show signs of weathering as a result of exposure to the heat of the fire. In addition, when the substrate is rich in organic matter, both weathering and microbial degradation may be observed. In this study, 20 μL aliquots of fresh gasoline samples were intentionally weathered and also subjected to microbial degradation in potting soil. These samples were then analyzed using a passive adsorption-elution recovery method and gas chromatography/mass spectrometry. Peak areas from compounds of interest were normalized and autoscaled and then subjected to principal components analysis. This analysis showed that while lower boiling compounds are subject to weathering, a different set of compounds are subject to microbial degradation. Of the compounds studied, heptane, octane, toluene, and ethylbenzene were the most vulnerable to both weathering and microbial degradation. In contrast, 1,3,5-trimethylbenzene and 2-ethyltoluene were the most resistant to both phenomena. © 2011 American Academy of Forensic Sciences. This article was published in J Forensic Sci and referenced in Journal of Bioremediation & Biodegradation

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords