alexa Comparison of different standards for real-time PCR-based absolute quantification.
General Science

General Science

Journal of Bioterrorism & Biodefense

Author(s): Dhanasekaran S, Doherty TM, Kenneth J TB Trials St

Abstract Share this page

Abstract Quantitative real-time PCR (qPCR) is a powerful tool used for both research and diagnostic, which has the advantage, compared to relative quantification, of providing an absolute copy number for a particular target. However, reliable standards are essential for qPCR. In this study, we have compared four types of commonly-used standards--PCR products (with and without purification) and cloned target sequences (circular and linear plasmid) for their stability during storage (using percentage of variance in copy numbers, PCR efficiency and regression curve correlation coefficient (R(2))) using hydrolysis probe (TaqMan) chemistry. Results, expressed as copy numbers/microl, are presented from a sample human system in which absolute levels of HuPO (reference gene) and the cytokine gene IFN-gamma were measured. To ensure the suitability and stability of the four standards, the experiments were performed at 0, 7 and 14 day intervals and repeated 6 times. We have found that the copy numbers vary (due to degradation of standards) over the period of time during storage at 4 degrees C and -20 degrees C, which affected PCR efficiency significantly. The cloned target sequences were noticeably more stable than the PCR product, which could lead to substantial variance in results using standards constructed by different routes. Standard quality and stability should be routinely tested for assays using qPCR. B.V. All rights reserved. This article was published in J Immunol Methods and referenced in Journal of Bioterrorism & Biodefense

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version