alexa Comparison of methods for estimating the number of true null hypotheses in multiplicity testing.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Proteomics & Bioinformatics

Author(s): Hsueh HM, Chen JJ, Kodell RL

Abstract Share this page

Abstract When a large number of statistical tests is performed, the chance of false positive findings could increase considerably. The traditional approach is to control the probability of rejecting at least one true null hypothesis, the familywise error rate (FWE). To improve the power of detecting treatment differences, an alternative approach is to control the expected proportion of errors among the rejected hypotheses, the false discovery rate (FDR). When some of the hypotheses are not true, the error rate from either the FWE- or the FDR-controlling procedure is usually lower than the designed level. This paper compares five methods used to estimate the number of true null hypotheses over a large number of hypotheses. The estimated number of true null hypotheses is then used to improve the power of FWE- or FDR-controlling methods. Monte Carlo simulations are conducted to evaluate the performance of these methods. The lowest slope method, developed by Benjamini and Hochberg (2000) on the adaptive control of the FDR in multiple testing with independent statistics, and the mean of differences method appear to perform the best. These two methods control the FWE properly when the number of nontrue null hypotheses is small. A data set from a toxicogenomic microarray experiment is used for illustration. This article was published in J Biopharm Stat and referenced in Journal of Proteomics & Bioinformatics

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 9th International Conference on Bioinformatics
    October 23-24, 2017 Paris, France
  • 9th International Conference and Expo on Proteomics
    October 23-25, 2017 Paris, France

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version