alexa Comparison of parametric representations for monosyllabic word recognition in continuously spoken sentences


Journal of Telecommunications System & Management

Author(s): S Davis, P Mermelstein

Abstract Share this page

Several parametric representations of the acoustic signal were compared with regard to word recognition performance in a syllable-oriented continuous speech recognition system. The vocabulary included many phonetically similar monosyllabic words, therefore the emphasis was on the ability to retain phonetically significant acoustic information in the face of syntactic and duration variations. For each parameter set (based on a mel-frequency cepstrum, a linear frequency cepstrum, a linear prediction cepstrum, a linear prediction spectrum, or a set of reflection coefficients), word templates were generated using an efficient dynamic warping method, and test data were time registered with the templates. A set of ten mel-frequency cepstrum coefficients computed every 6.4 ms resulted in the best performance, namely 96.5 percent and 95.0 percent recognition with each of two speakers. The superior performance of the mel-frequency cepstrum coefficients may be attributed to the fact that they better represent the perceptually relevant aspects of the short-term speech spectrum.

This article was published in IEEE and referenced in Journal of Telecommunications System & Management

Relevant Expert PPTs

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version