alexa Comparison of platelet-rich plasma formulations for cartilage healing: an in vitro study.
Biomedical Sciences

Biomedical Sciences

Biology and Medicine

Author(s): Cavallo C, Filardo G, Mariani E, Kon E, Marcacci M,

Abstract Share this page

Abstract BACKGROUND: Platelet-rich plasma (PRP) has been advocated as one treatment for cartilage tissue regeneration. To date, several different platelet-rich formulations have been available, but a deep knowledge of their composition and mechanism of action in a specific clinical use is needed. The aim of this study was to investigate the effect of various PRP formulations on human chondrocytes in vitro. METHODS: Blood from ten human volunteers was used to prepare three formulations: (1) PRP with a relatively low concentration of platelets and very few leukocytes (P-PRP), (2) PRP with high concentrations of both platelets and leukocytes (L-PRP), and (3) platelet-poor plasma (PPP). Selected growth factors in the formulations were measured, and the in vitro effects of various concentrations were tested by exposing chondrocytes isolated from osteoarthritic cartilage of four different men and measuring cell proliferation, matrix production, and gene expression. RESULTS: L-PRP contained the highest levels of growth factors and cytokines. All three formulations stimulated chondrocyte proliferation throughout the culture period evaluated; the only significant difference among the formulations was on day 7, when P-PRP induced greater cell growth compared with the other two formulations. P-PRP stimulated chondrocyte anabolism, as shown by the expression of type-II collagen and aggrecan, whereas L-PRP promoted catabolic pathways involving various cytokines. However, L-PRP induced greater expression of the hyaluronic acid synthase-2 gene and greater production of hyaluronan compared with P-PRP. CONCLUSIONS: L-PRP and P-PRP induced distinct effects on human articular chondrocytes in vitro, possibly because of differences in the concentrations of platelets, leukocytes, growth factors, and other bioactive molecules. The identification of the optimal amounts and ratios of these blood components could ideally lead to a formulation more suitable for the treatment of cartilage lesions. This article was published in J Bone Joint Surg Am and referenced in Biology and Medicine

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords