alexa Comparison of receptor binding characteristics of commonly used muscarinic antagonists in human bladder detrusor and mucosa.
Microbiology

Microbiology

Journal of Microbial & Biochemical Technology

Author(s): Mansfield KJ, Chandran JJ, Vaux KJ, Millard RJ, Christopoulos A,

Abstract Share this page

Abstract Recent studies have described muscarinic receptors on the mucosa and the detrusor of the human urinary bladder. Muscarinic receptor antagonists are effective in the treatment of overactive bladder (OAB), but their site(s) of action and actual therapeutic target are unclear. Our aim was to compare, in human bladder mucosa and detrusor, the radioligand binding characteristics of newer, clinically effective agents: darifenacin, its hydroxylated metabolite UK-148,993, fesoterodine, solifenacin, tolterodine, and trospium. Specimens were collected from asymptomatic patients (50-72 years old) undergoing open bladder surgery. Radioligand binding studies with the muscarinic antagonist [3H]quinuclidinyl benzilate (QNB) were performed separately on detrusor and mucosal membranes. All antagonists displayed high affinity when competing for [3H]QNB binding in both detrusor and mucosa. Inhibition constants were also obtained for all antagonists against individual muscarinic receptor subtypes expressed in Chinese hamster ovary cells. Here, fesoterodine showed anomalous binding results, suggesting that some conversion to its metabolite had occurred. Global nonlinear regression analysis of bladder binding data with five antagonists demonstrated 82\% low-affinity sites in mucosa and 78\% low-affinity sites in detrusor, probably representing M(2)/M(4) receptors. There was an excellent correlation (r(2) = 0.99) of low-affinity global estimates between detrusor and mucosa, whereas the corresponding high-affinity estimates ( approximately 20\% of sites) were dissimilar. In conclusion, commonly used and clinically effective muscarinic receptor antagonists bind to receptors located on the bladder mucosa and the detrusor, providing support for the hypothesis that muscarinic receptors in the mucosa may represent an important site of action for these agents in OAB. This article was published in J Pharmacol Exp Ther and referenced in Journal of Microbial & Biochemical Technology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords