alexa Comparison of statistical tests for disease association with rare variants.
Genetics & Molecular Biology

Genetics & Molecular Biology

Human Genetics & Embryology

Author(s): Basu S, Pan W

Abstract Share this page

Abstract In anticipation of the availability of next-generation sequencing data, there is increasing interest in investigating association between complex traits and rare variants (RVs). In contrast to association studies for common variants (CVs), due to the low frequencies of RVs, common wisdom suggests that existing statistical tests for CVs might not work, motivating the recent development of several new tests for analyzing RVs, most of which are based on the idea of pooling/collapsing RVs. However, there is a lack of evaluations of, and thus guidance on the use of, existing tests. Here we provide a comprehensive comparison of various statistical tests using simulated data. We consider both independent and correlated rare mutations, and representative tests for both CVs and RVs. As expected, if there are no or few non-causal (i.e. neutral or non-associated) RVs in a locus of interest while the effects of causal RVs on the trait are all (or mostly) in the same direction (i.e. either protective or deleterious, but not both), then the simple pooled association tests (without selecting RVs and their association directions) and a new test called kernel-based adaptive clustering (KBAC) perform similarly and are most powerful; KBAC is more robust than simple pooled association tests in the presence of non-causal RVs; however, as the number of non-causal CVs increases and/or in the presence of opposite association directions, the winners are two methods originally proposed for CVs and a new test called C-alpha test proposed for RVs, each of which can be regarded as testing on a variance component in a random-effects model. Interestingly, several methods based on sequential model selection (i.e. selecting causal RVs and their association directions), including two new methods proposed here, perform robustly and often have statistical power between those of the above two classes. © 2011 Wiley Periodicals, Inc.
This article was published in Genet Epidemiol and referenced in Human Genetics & Embryology

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version