alexa Compartmental analysis of taurine transport to the outer retina in the bovine eye.
Biochemistry

Biochemistry

Journal of Membrane Science & Technology

Author(s): Hillenkamp J, Hussain AA, Jackson TL, Constable PA, Cunningham JR,

Abstract Share this page

Abstract PURPOSE: To assess the relative resistance presented individually by Bruch's membrane-choroid (BC) and the retinal pigment epithelium (RPE) to movement of taurine between the choroidal circulation and the outer retina. To quantify the effect of light-evoked changes in subretinal potassium concentration on the transepithelial transport of taurine across bovine RPE. METHODS: Transport studies were performed in Ussing chambers with intact and RPE-denuded specimens of BC. RPE viability was monitored by recording transepithelial potential (TEP) and transepithelial resistance (TER). Taurine transport with substrate concentrations in the micro- and millimolar range, reflecting physiological taurine concentrations in plasma, retina, and subretinal space was quantified by high-performance liquid chromatography (HPLC) and radiotracer techniques. Taurine transport was also assessed after apical potassium concentration was lowered from 6.0 to 2.2 mM to mimic the effects of light. RESULTS: Transport of taurine across RPE-BC at a 10-mM substrate concentration increased from 32.92 before to 111.72 nanomoles/4 mm per hour after removal of the RPE. Similarly, at 50 microM taurine, transport rates increased from 0.158 to 0.439 nanomoles/4 mm per hour after removal of the RPE. At both high (10 mM) and low (50 microM) substrate concentrations, lowering of apical potassium was associated with decreased transport of taurine across the RPE. For taurine concentrations greater than 42 microM, the rate-limiting compartment for transport of taurine to the outer retina was the RPE monolayer. Similar rates were observed across each compartment for concentrations <42 microM. CONCLUSIONS: The magnitude and directionality of taurine transport across the RPE is determined solely by the driving taurine concentration gradient and is modulated by subretinal levels of potassium. Such modulation may provide a mechanism for conserving retinal taurine. Processes that increase the resistance to diffusion across Bruch's membrane such as human ageing and increased thickening and deposition of debris associated with age-related macular degeneration (AMD) are likely to affect transport across the RPE, culminating in a secondary retinal taurine deficiency. This article was published in Invest Ophthalmol Vis Sci and referenced in Journal of Membrane Science & Technology

Relevant Expert PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords