alexa Compound heterozygous mutations P336L and I1660V in the human cardiac sodium channel associated with the Brugada syndrome.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Genetic Syndromes & Gene Therapy

Author(s): Cordeiro JM, BarajasMartinez H, Hong K, Burashnikov E, Pfeiffer R,

Abstract Share this page

Abstract BACKGROUND: Loss-of-function mutations in SCN5A have been associated with the Brugada syndrome. We report the first Brugada syndrome family with compound heterozygous mutations in SCN5A. The proband inherited 1 mutation from each parent and transmitted 1 to each daughter. METHODS AND RESULTS: The effects of the mutations on the function of the sodium channel were evaluated with heterologous expression in TSA201 cells, patch-clamp study, and confocal microscopy. Genetic analysis revealed that the proband carried 2 heterozygous missense mutations (P336L and I1660V) on separate alleles. He displayed a coved-type ST-segment elevation and a prolonged PR interval (280 ms). One daughter inherited P336L and exhibited a prolonged PR (210 ms). The other daughter inherited mutation I1660V and displayed a normal PR interval. Both daughters had a slightly elevated, upsloping ST-segment elevation. The parents had normal ECGs. Patch-clamp analysis showed that the P336L mutation reduced I(Na) by 85\% relative to wild type. The I1660V mutation produced little measurable current, which was rescued by room temperature incubation for 48 hours. Sodium channel blockers also rescued the I1660V current, with mexiletine proving to be the most effective. Confocal immunofluorescence showed that I1660V channels conjugated to green fluorescent protein remained trapped in intracellular organelles. CONCLUSIONS: Mutation P336L produced a reduction in cardiac I(Na), whereas I1660V abolished it. Only the proband carrying both mutations displayed the Brugada syndrome phenotype, whereas neither mutation alone produced the clinical phenotype. I1660V channels could be rescued pharmacologically and by incubation at room temperature. The present data highlight the role of compound heterozygosity in modulating the phenotypic expression and penetrance of Brugada syndrome.
This article was published in Circulation and referenced in Journal of Genetic Syndromes & Gene Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords