alexa Comprehensive integrated spirometry using raised volume passive and forced expirations and multiple-breath nitrogen washout in infants.


Internal Medicine: Open Access

Author(s): Morris MG

Abstract Share this page

Abstract With the rapid somatic growth and development in infants, simultaneous accurate measurements of lung volume and airway function are essential. Raised volume rapid thoracoabdominal compression (RTC) is widely used to generate forced expiration from an airway opening pressure of 30 cmH(2)O (V(30)). The (dynamic) functional residual capacity (FRC(dyn)) remains the lung volume most routinely measured. The aim of this study was to develop comprehensive integrated spirometry that included all subdivisions of lung volume at V(30) or total lung capacity (TLC(30)). Measurements were performed on 17 healthy infants aged 8.6-119.7 weeks. A commercial system for multiple-breath nitrogen washout (MBNW) to measure lung volumes and a custom made system to perform RTC were used in unison. A refined automated raised volume RTC and the following two novel single maneuvers with dual volume measurements were performed from V(30) during a brief post-hyperventilation apneic pause: (1) the passive expiratory flow was integrated to produce the inspiratory capacity (IC) and the static (passive) FRC (FRC(st)) was estimated by initiating MBNW after end-passive expiration; (2) RTC was initiated late during passive expiration, flow was integrated to produce the slow vital capacity ((j)SVC) and the residual volume (RV) was measured by initiating MBNW after end-expiration while the jacket (j) was inflated. Intrasubject FRC(dyn) and FRC(st) measurements overlapped (p=0.6420) but neither did with the RV (p<0.0001). Means (95\% confidence interval) of FRC(dyn), IC, FRC(st), (j)SVC, RV, forced vital capacity and tidal volume were 21.2 (19.7-22.7), 36.7 (33.0-40.4), 21.2 (19.6-22.8), 40.7 (37.2-44.2), 18.1 (16.6-19.7), 40.7 (37.1-44.2) and 10.2 (9.6-10.7)ml/kg, respectively. Static lung volumes and capacities at V(30) and variables from the best forced expiratory flow-volume curve were dependent on age, body length and weight. In conclusion, we developed a comprehensive physiologically integrated approach for in-depth investigation of lung function at V(30) in infants. Copyright 2009 Elsevier B.V. All rights reserved.
This article was published in Respir Physiol Neurobiol and referenced in Internal Medicine: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

  • Shoude Jin
    Mechanisms of Chronic obstructive pulmonary disease and airway smooth muscle remodeling: the potential roles of Abhd2
    PDF Version
  • Alsayed Alnahal
    Urinary netrin-1 predict early ischemic acute kidney injury after cardiopulmonary bypass
    PPT Version | PDF Version
  • Ping Yang
    Chronic obstructive pulmonary disease (COPD) complicating early-stage lung cancer (LC)
    PDF Version
  • Gunilla Lindqvist
    Chronic obstructive pulmonary disease: A study of the relationship between patients’ feeling of guilt due to their belief of the disease being self inflicted
    PDF Version
  • Roger Mark Engel
    The effect of including manual therapy in the management of mild chronic obstructive pulmonary disease – a randomized controlled trial
    PDF Version
  • Rupal Patel Mansukhani
    Correlation of Medication Therapy in Chronic Obstructive Pulmonary Disease(COPD) Patients with 30-day Readmission Rates
    PPT Version | PDF Version
  • Hadeel Faisal Gad
    In-vitro analysis of cytokines responses of visceral leishmaniasis and pulmonary tuberculosis patients to homologous and heterologous antigen stimulation
    PPT Version | PDF Version
  • Xin Wang
    IL17 Pathway Involves Moderating Pulmonary Hypertension, a common complication of COPD, in Statins Therapy in Smoking Rats
    PPT Version | PDF Version

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version