alexa Compressive Sensing for Background Subtraction
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Theoretical and Computational Science

Author(s): Volkan Cevher, Aswin Sankaranarayanan, Marco F Duarte, Dikpal Reddy, Richard G Baraniuk

Abstract Share this page

Compressive sensing (CS) is an emerging field that provides a framework for image recovery using sub-Nyquist sampling rates. The CS theory shows that a signal can be reconstructed from a small set of random projections, provided that the signal is sparse in some basis, e.g., wavelets. In this paper, we describe a method to directly recover background subtracted images using CS and discuss its applications in some communication constrained multi-camera computer vision problems. We show how to apply the CS theory to recover object silhouettes (binary background subtracted images) when the objects of interest occupy a small portion of the camera view, i.e., when they are sparse in the spatial domain. We cast the background subtraction as a sparse approximation problem and provide different solutions based on convex optimization and total variation. In our method, as opposed to learning the background, we learn and adapt a low dimensional compressed representation of it, which is sufficient to determine spatial innovations; object silhouettes are then estimated directly using the compressive samples without any auxiliary image reconstruction. We also discuss simultaneous appearance recovery of the objects using compressive measurements. In this case, we show that it may be necessary to reconstruct one auxiliary image. To demonstrate the performance of the proposed algorithm, we provide results on data captured using a compressive single-pixel camera. We also illustrate that our approach is suitable for image coding in communication constrained problems by using data captured by multiple conventional cameras to provide 2D tracking and 3D shape reconstruction results with compressive measurements.

This article was published in Lecture Notes in Computer Science and referenced in Journal of Theoretical and Computational Science

Relevant Expert PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords