alexa Computational Investigation of Technetium(IV) Incorporation into Inverse Spinels: Magnetite (Fe3O4) and Trevorite (NiFe2O4).
Engineering

Engineering

Journal of Steel Structures & Construction

Author(s): Smith FN, Um W, , Taylor CD, ,

Abstract Share this page

Abstract Iron oxides and oxyhydroxides play an important role in minimizing the mobility of redox-sensitive elements in engineered and natural environments. For the radionuclide technetium-99 (Tc), these phases hold promise as primary hosts for increasing Tc loading into glass waste form matrices, or as secondary sinks during the long-term storage of nuclear materials. Recent experiments show that the inverse spinel, magnetite [Fe(II)Fe(III)2O4], can incorporate Tc(IV) into its octahedral sublattice. In that same class of materials, trevorite [Ni(II)Fe(III)2O4] is also being investigated for its ability to host Tc(IV). However, questions remain regarding the most energetically favorable charge-compensation mechanism for Tc(IV) incorporation in each structure, which will affect Tc behavior under changing waste processing or storage conditions. Here, quantum-mechanical methods were used to evaluate incorporation energies and optimized lattice bonding environments for three different, charge-balanced Tc(IV) incorporation mechanisms in magnetite and trevorite (∼5 wt \% Tc). For both phases, the removal of two octahedral Fe(II) or Ni(II) ions upon the addition of Tc(IV) in an octahedral site is the most stable mechanism, relative to the creation of octahedral Fe(III) defects or increasing octahedral Fe(II) content. Following hydration-energy corrections, Tc(IV) incorporation into magnetite is energetically favorable while an energy barrier exists for trevorite. This article was published in Environ Sci Technol and referenced in Journal of Steel Structures & Construction

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords