alexa Computational strategies for evaluating barrier heights for gas-phase reactions of lithium enolates.
Chemistry

Chemistry

Organic Chemistry: Current Research

Author(s): Pratt LM, Van Nguyn N, Ramachandran B

Abstract Share this page

Abstract Gas-phase activation energies were calculated for three lithium enolate reactions by using several different ab initio and density functional theory (DFT) methods to determine which levels of theory generate acceptable results. The reactions included an aldol-type addition of an enolate to an aldehyde, a proton transfer from an alcohol to a lithium enolate, and an S(N)2 reaction of an enolate with chloromethane. For each reaction, the calculations were performed for both the monomeric and dimeric forms of the lithium enolate. It was found that transition state geometry optimization with B3LYP followed by single point MP2 calculations generally provided acceptable results compared to higher level ab initio methods. This article was published in J Org Chem and referenced in Organic Chemistry: Current Research

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

  • 3rd International Conference on Organic & Inorganic Chemistry
    July 17-19, 2017 Chicago, Illinois, USA
  • 3rd World Chemistry Conference
    September 11-12, 2017 Dallas, USA
  • 2nd International Conference on Biochemistry
    Sep 21-22, 2017 Macau, Hong Kong
  • Chemistry Congress 2017
    October 02-04, 2017 Vancouver, Canada

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords