alexa Computer-assisted design for paracetamol masking bitter taste prodrugs.
Medicine

Medicine

Drug Designing: Open Access

Author(s): Hejaz H, Karaman R, Khamis M

Abstract Share this page

Abstract It is believed that the bitter taste of paracetamol, a pain killer drug, is due to its hydroxyl group. Hence, it is expected that blocking the hydroxy group with a suitable linker could inhibit the interaction of paracetamol with its bitter taste receptor/s and hence masking its bitterness. Using DFT theoretical calculations we calculated proton transfers in ten different Kirby's enzyme models, 1-10. The calculation results revealed that the reaction rate is linearly correlated with the distance between the two reactive centers (r(GM)) and the angle of the hydrogen bonding (α) formed along the reaction pathway. Based on these results three novel tasteless paracetamol prodrugs were designed and the thermodynamic and kinetic parameters for their proton transfers were calculated. Based on the experimental t(1/2) (the time needed for the conversion of 50\% of the reactants to products) and EM (effective molarity) values for processes 1-10 we have calculated the t(1/2) values for the conversion of the three prodrugs to the parental drug, paracetamol. The calculated t(1/2) values for ProD 1-3 were found to be 21.3 hours, 4.7 hours and 8 minutes, respectively. Thus, the rate by which the paracetamol prodrug undergoes cleavage to release paracetamol can be determined according to the nature of the linker of the prodrug (Kirby's enzyme model 1-10). Further, blocking the phenolic hydroxyl group by a linker moiety is believed to hinder the paracetamol bitterness. This article was published in J Mol Model and referenced in Drug Designing: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords