alexa Computer-assisted design of pro-drugs for antimalarial atovaquone.


Drug Designing: Open Access

Author(s): Karaman R, Hallak H, Karaman R, Hallak H

Abstract Share this page

Abstract Density Functional Theory (DFT) and ab initio calculation results for the proton transfer reaction in Kirby's enzyme models 1-6 reveal that the reaction rate is largely dependent on the existence of a hydrogen bonding net in the reactants and the corresponding transition states. Further, the distance between the two reacting centers and the angle of the hydrogen bonding formed along the reaction path has profound effects on the rate. Hence, the study on the systems reported herein could provide a good basis for designing antimalarial (atovaquone) pro-drug systems that can be used to release the parent drug in a controlled manner. For example, based on the calculated log EM, the cleavage process for pro-drug 1Pro may be predicted to be about 10¹¹ times faster than that for a pro-drug 4Pro and about 10⁴ times faster than pro-drug 2Pro: rate (1Pro) > rate (2Pro > rate (4Pro). Thus, the rate by which the pro-drug releases the antimalarial drug can be determined according to the nature of the linker (Kirby's enzyme model 1-6). © 2010 John Wiley & Sons A/S. This article was published in Chem Biol Drug Des and referenced in Drug Designing: Open Access

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version