alexa Computer-derived nuclear features distinguish malignant from benign breast cytology.
Bioinformatics & Systems Biology

Bioinformatics & Systems Biology

Journal of Theoretical and Computational Science

Author(s): Wolberg WH, Street WN, Heisey DM, Mangasarian OL

Abstract Share this page

Abstract This article describes the use of computer-based analytical techniques to define nuclear size, shape, and texture features. These features are then used to distinguish between benign and malignant breast cytology. The benign and malignant cell samples used in this study were obtained by fine needle aspiration (FNA) from a consecutive series of 569 patients: 212 with cancer and 357 with fibrocystic breast masses. Regions of FNA preparations to be analyzed were converted by a video camera to computer files that were displayed on a computer monitor. Nuclei to be analyzed were roughly outlined by an operator using a mouse. Next, the computer generated a "snake" that precisely enclosed each designated nucleus. The computer calculated 10 features for each nucleus. The ability to correctly classify samples as benign or malignant on the basis of these features was determined by inductive machine learning and logistic regression. Cross-validation was used to test the validity of the predicted diagnosis. The logistic regression cross validated classification accuracy was 96.2\% and the inductive machine learning cross-validated classification accuracy was 97.5\%. Our computerized system provides a probability that a sample is malignant. Should this probability fall between 30\% and 70\%, the sample is considered "suspicious," in the same way a visually graded FNA may be termed suspicious. All of the 128 consecutive cases obtained since the introduction of this system were correctly diagnosed, but nine benign aspirates fell into the suspicious category.(ABSTRACT TRUNCATED AT 250 WORDS)
This article was published in Hum Pathol and referenced in Journal of Theoretical and Computational Science

Relevant Expert PPTs

Relevant Speaker PPTs

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords