alexa Conformer generation with OMEGA: learning from the data set and the analysis of failures.
Chemistry

Chemistry

Medicinal Chemistry

Author(s): Hawkins PC, Nicholls A

Abstract Share this page

Abstract We recently published a high quality validation set for testing conformer generators, consisting of structures from both the PDB and the CSD (Hawkins, P. C. D. et al. J. Chem. Inf. Model. 2010, 50, 572.), and tested the performance of our conformer generator, OMEGA, on these sets. In the present publication, we focus on understanding the suitability of those data sets for validation and identifying and learning from OMEGA's failures. We compare, for the first time we are aware of, the coverage of the applicable property spaces between the validation data sets we used and the parent compound sets to determine if our data sets adequately sample these property spaces. We also introduce the concept of torsion fingerprinting and compare this method of dissimilation to the more traditional graph-centric diversification methods we used in our previous publication. To improve our ability to programmatically identify cases where the crystallographic conformation is not well reproduced computationally, we introduce a new metric to compare conformations, RMSTanimoto. This new metric is used alongside those from our previous publication to efficiently identify reproduction failures. We find RMSTanimoto to be particularly effective in identifying failures for the smallest molecules in our data sets. Analysis of the nature of these failures, particularly those for the CSD, sheds further light on the issue of strain in crystallographic structures. Some of the residual failure cases not resolved by simple changes in OMEGA's defaults present significant challenges to conformer generation engines like OMEGA and are a source of new avenues to further improve their performance, while others illustrate the pitfalls of validating against crystallographic ligand conformations, particularly those from the PDB. This article was published in J Chem Inf Model and referenced in Medicinal Chemistry

Relevant Expert PPTs

Relevant Speaker PPTs

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

Agri, Food, Aqua and Veterinary Science Journals

Dr. Krish

[email protected]

1-702-714-7001 Extn: 9040

Clinical and Biochemistry Journals

Datta A

[email protected]

1-702-714-7001Extn: 9037

Business & Management Journals

Ronald

[email protected]

1-702-714-7001Extn: 9042

Chemical Engineering and Chemistry Journals

Gabriel Shaw

[email protected]

1-702-714-7001 Extn: 9040

Earth & Environmental Sciences

Katie Wilson

[email protected]

1-702-714-7001Extn: 9042

Engineering Journals

James Franklin

[email protected]

1-702-714-7001Extn: 9042

General Science and Health care Journals

Andrea Jason

[email protected]

1-702-714-7001Extn: 9043

Genetics and Molecular Biology Journals

Anna Melissa

[email protected]

1-702-714-7001 Extn: 9006

Immunology & Microbiology Journals

David Gorantl

[email protected]

1-702-714-7001Extn: 9014

Informatics Journals

Stephanie Skinner

[email protected]

1-702-714-7001Extn: 9039

Material Sciences Journals

Rachle Green

[email protected]

1-702-714-7001Extn: 9039

Mathematics and Physics Journals

Jim Willison

[email protected]

1-702-714-7001 Extn: 9042

Medical Journals

Nimmi Anna

[email protected]

1-702-714-7001 Extn: 9038

Neuroscience & Psychology Journals

Nathan T

[email protected]

1-702-714-7001Extn: 9041

Pharmaceutical Sciences Journals

John Behannon

[email protected]

1-702-714-7001Extn: 9007

Social & Political Science Journals

Steve Harry

[email protected]

1-702-714-7001 Extn: 9042

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords