alexa Constitutive arrestin-mediated desensitization of a human vasopressin receptor mutant associated with nephrogenic diabetes insipidus.
Genetics & Molecular Biology

Genetics & Molecular Biology

Journal of Genetic Syndromes & Gene Therapy

Author(s): Barak LS, Oakley RH, Laporte SA, Caron MG

Abstract Share this page

Abstract Agonist-dependent desensitization and internalization of G protein-coupled receptors (GPCR) are mediated by the binding of arrestins to phosphorylated receptors. The affinity of arrestins for the phosphorylated GPCR regulates the ability of the internalized receptor to be dephosphorylated and recycled back to the plasma membrane. In this study, we show that the naturally occurring loss of function vasopressin receptor mutation R137H, which is associated with familial nephrogenic diabetes insipidus, induces constitutive arrestin-mediated desensitization. In contrast to the wild-type vasopressin receptor, the nonsignaling R137H receptor is phosphorylated and sequestered in arrestin-associated intracellular vesicles even in the absence of agonist. Eliminating molecular determinants on the receptor that promote high affinity arrestin-receptor interaction reestablishes plasma membrane localization and the ability of the mutated receptors to signal. These findings suggest that unregulated desensitization can contribute to the etiology of a GPCR-based disease, implying that pharmacological targeting of GPCR desensitization may be therapeutically beneficial.
This article was published in Proc Natl Acad Sci U S A and referenced in Journal of Genetic Syndromes & Gene Therapy

Relevant Expert PPTs

Relevant Speaker PPTs

Recommended Conferences

Relevant Topics

Peer Reviewed Journals
 
Make the best use of Scientific Research and information from our 700 + peer reviewed, Open Access Journals
International Conferences 2017-18
 
Meet Inspiring Speakers and Experts at our 3000+ Global Annual Meetings

Contact Us

 
© 2008-2017 OMICS International - Open Access Publisher. Best viewed in Mozilla Firefox | Google Chrome | Above IE 7.0 version
adwords